Why do we know so little about
programming languages, and what would
have happened if we had known more?

Stefan Hanenberg

University of Duisburg-Essen, Germany

Dynamic Language Symposium 2014
Portland, Orgegon, US

a) Why do we know so little about
programming languages?

b) What would have happened if we had
known more?

Stefan Hanenberg

University of Duisburg-Essen, Germany

Dynamic Language Symposium 2014
Portland, Orgegon, US

Why do we know so little about
programming languages?

What Is the goal of programming
language (PL) research?

a) PLs let us tell the machine to do something

b) PLs let a machine do a fast computation

Goals achieved?

a) PLs let us tell the machine to do something

 Models of computation (turing-machines, etc.)

b) PLs let a machine do a fast computation
 Well, programs run already ,quite fast”

Why Is there still a need for PL
research / PL development?

a) PLs let us tell the machine to do something

* Let's give people better means to tell the
machine what to do

b) PLs let a machine do a fast computation
* Let's make it even faster

The two stories of PL research
(simplified)

b) Let's do it faster

 What do people do?
- Formal models, benchmarking, etc.

a) Let's provide better means for developers

 What do people do?
- They report on their experience (aka anecdotal evidence)

The two stories of PL research
(simplified)

There is nothing wrong with it...

b) Let's do it faster

 What do people do?
- Formal models, benchmarking, etc.

a) Better means for developers
 What do people do?

- They report on their experience (aka anecdotal evidence)

The two stories of PL research

(simplified)

b) Let's do it faster

 What do people do?
- Formal models, benchmarking, etc.

There is nothing wrong with it...

Statements from literature

Statements from literature (1)

What object-oriented programming may be -
and what it does not have to be

Ole Lehrmann Madsen,
Dept. of Computer Science, Aarhus University,
Ny Munkegade, DK-8000 Aarhus C, Denmark
email: olm{@daimi.dk

Birger Mpller-Pedersen
Norwegian Computing Center,
P.O.Box 114 Blindem, N-0314 Oslo 3, Norway
ean: birger@vax.nr.uninett

Abstract

A conceptual framework for object-oriented programming is presented. The framework is
independent of specific programming language constructs. It is illustrated how this framework is
reflected in an object-oriented language and the language mechanisms are compared with the
corresponding elements of other object-oriented languages. Main issues of object-onented
programming are considered on the basis of the framework presented here.

[ECOOP 1990]

Statements from literature (1)

What object-oriented programming may be -

,One of the reasons that object-
oriented programming has been
become so widely accepted is that
object orientation is close to the
natural perception of the real world.”
ibtpt, The closer it is possible to use this
ndependent of WAy OF thinking In programming, the

coresponding @ Ser |t 1S tO write and understand
Programimng g (@
programs. 90]

Statements from literature (2)

Modular Domain Specific Languages and Tools

Paul Hudak
Department of Computer Science
Yale University
New Haven, CT 06520
paul .hudak@yale.edu

Abstract

A domain specific language [DSL) allows one to
develop software for a particular application domain
quickly and effectively, yielding programs that are
easy to understand, reason about, and maintain. On
the other hand, there may be a significant overhead
in ecreating the infrastructure needed to support a
DSL. To solve this problem, a methodology is de-
scribed for building domain specific embedded lan-
quages {HSELS}& in which a DSL is designed within
an ezisting, higher-order and typed, programming lan-
quage such as Haskell or ML. In addition, techniques
are deseribed for building modular mtcrprciﬂm and
tools for DSELs. The resulting methodology facilitates
reuse of syntaz, semantics, implementation code, soft-
ware tools, as well as look-and ~feel.

F Y
Total SW Cost Convenfional ¥
) methodology .-
I
et i F"E-I 1se
. It ﬁ*ﬁrﬂacolﬂm
[L
Start-up i
Costs N
C
>

Software Life-Cycle

Figure 1: The Payoft of DSL Technology

[ICSR '98]

Statements from literature (2)

Modular Domain Specific Languages and Tools

Paul Hudak

Department of Computer Science

A domain specific language (DSL)

ATE] allows one to develop software for a
secln f DArticular application domain quickly
s o] @Nd effectively, yielding programs

quickly a
n creatin
v bl that are easy to understand, reason
nee ol about, and maintain.” ... R

guage sucl
are deser;
tools for 1
reuse of syTTTIT, SCTIOIIICS, TpCT e L Ao TOus, S0
ware tools, as well as look-and-feel.

[ICSR '98]

Statements from literature (3)

Types and

Programming
Languages

Benjamin C. Pierce

MIT Press 2002

Statements from literature (3)

Types and

Programming

Languages

..., 1ypes are also useful when reading
programs” ...

Benjamin C. Pierce

MIT Press 2002

What's common in previous statements?

They refer to human behavior

Human behavior is essential for the argumentation

Human behavior is being made pausible

Human behavior is not tested

..and...

What's common in previous statements?

They refer to human behavior

Human behavior is essential for the argumentation

Human behavior is being made pausible

Human behavior is not tested

It Is not a singular phenomena

WA total of 1.1% of papers both had evidence in WWC

categories 1 or 2 and were about language design [for
PPIG]"

...14.3% for PLATEAU, 16.7% for ESP...
[Stefik et al ICPC'14]

(average WWC scores between .2 and .7)

What's the problem?

Neither assumptions nor conclusions are tested

Risk that ...

... some(?) PL tools never ever showed the expected
Influence on developers

... Some(?) statements in SE literature are wrong

... some(?) of our tools are useless. Which ones?

... some(?) of our tools are harmful. Which ones?

Conclusion

Human characteristics and behavior often used to
argue for or against some techniques

No known techniques for testing human behavior
are applied

Why?

SE Research Methods & Education

Stochastic ‘ '
[|
I

Benchmark-
based

l Classical

”
+,

Socio-
Technical

[]

Stochastic-
Experimental

Stochastic-
Mathematical

Technical A3
Approaches

Empirical
Approaches

[Hanenberg, Faith, Hope, Love, Onward'10]

22

SE Research Methods & Education

Benchmark-
based

Socio-
Technical

[]

Stochastic-
Mathematical

Stochastic- E
Experimental

Empirical
Approaches

Technical
Approaches

Mathematical
education

[Hanenberg, Faith, Hope, Love, Onward'10]

23

SE Research Methods & Education

Stochastic ‘

Benchmark-

I Classical
based

Stochastic-
Experimental

Stochastic-
Mathematical

[Hanenberg, Faith, Hope, Love, Onward'10]

24

SE Research Methods & Education

—__| Any teaching at all?
Socio-
Technical

Stochastic-
Experimental - E

Stochastic ‘ '
[|
!

Benchmark-
based

I Classical

¥

Stochastic-
Mathematical

Technical v

Approaches ~+/Z_ |}

Empirical
Approaches

[Hanenberg, Faith, Hope, Love, Onward'10]

25

Conclusion

Human methods not taught

=> No human methods applied

=> No data avallable on human behavior in PL usage
=> Statements about human behavior are speculative
=> Missing knowledge in PL usage and usability

This Is not completely true....

« there are people that apply human-centered methods ...

This is not completely true....

« there are people that apply human-centered methods ...

* ... butthey are still relatively few

This is not completely true....

 there are books that introduce into human-centered
methods ...

e
: EXFERIMENTATIONIN

SOFTWARE
E Wl W R MG

Luiz Frechek
EEE " i An Inbroduclicm
iER] .
EEN] =
IEE =

Kontrollierte Experimente
in der Softwaretechnik

aal umd M f" - m‘!ﬁﬂi‘l:’:"‘-':"-‘ T P ——
SOFTWARE PSYGHOLOGY -

g

L b
F 32 “"

By Hoeh mi - Hans Diczer Bombach
ol e W, oo Lr i g

Foundations of
Empirical Software
Engineering

k 1__‘. .I (LWl E
snd Systems Engineering

Albert Endres B %
Bieter Rombach L “

e ... butthey are still relatively few

Example of applied human-centered methods:
Experiment series on type systems

Experiment 5: Types & APIS (crc1

ldea: Static type systems help when using an undocumented
API

Experiment

« Java/ Groovy as Pls, Development time as measurement
* 9 programming tasks
- 2 tasks: fix semantic error / 2 tasks: fix type error / 5 tasks: use API classes
« 33 subjects (mainly students)
« Within-subject design (2 groups)
Result
» Positive effect for 6/9 tasks

- No effect on fixing semantic error
- Positive effect on fixing type error
- Mostly (4/5) positive effect on using API classes

31

Experiment 5: Types & APIS (crc1

Language

¢ TaSk 4,5 20007 Gr*:::-*:::-vy
Semantlc EJava
errors . i
30007 -

e 123,6,8: ° s o o
New class
usage

o 8 © 0
e 7/, 10: 8
Type errors 10007 % é é % x % §

= &

Times
am
o)
0

20007 o

| | T T T | | T]
Task Task Task Task Task Task Task Task Task
1 2 3 4 5 G 7 2 o

Task

Experiment 5: Types & APIS (crc1

Language

TaSk 4,5 20007 Grc:-c::-vy
EJava

Semantic
errors

30007

e 1,23,6,8:
New class s |
usage S
e /,10:

Type errors 10007

Experiment 5: Types & API
S Faster use

Task 4,5: 40007 of statically

Semantic typed
errors classes

1,2,3,6,8:
New class

e /,10:
Type errors

Experiment 5: Types & APIS (crc1

Language

¢ TaSk 4,5 20007 Grc:-c::-vy
Semantic Sava

errors

30007

Much faster

debugging of

w
8
E 2000- type errors
o]) E
8 | N = N
1000 = Ny NE N
S T NT “

Task Task Task Task Task Task
1 2 3 4 5 3]

Task

Experiment 5: Types & APIS (crc1

Potential problems

 Artificially constructed API

- parameter names do not reflect on type names (but names were
chosen from the domain)

- Is it repesentative?
« Atrtificially constructed environment

 Atrtificial programming tasks
e Java type system
Maybe we measured something else

« Existence of type annotations in the code help....no matter whether
they are statically type checked or not*

Maybe .in the wild" positive effect of static type system ,vanishs*

* There is no generalizability

36

Results so far....

\
It looks like (Java-like) static type system

(in Java-like languages) really help in
. development! Y.

Tested Statements and Results (1)

Naive Experiment: [OOPSLA'10]
Dynamic Type System are great....almost...

Do type casts matter? [DLS'11]
Not really.

. N
Are dynamic TS as quick for fixing type errors as static TS?
No, not even close! But no difference for semantic errors.
[unpublished'1l, ICPC'12]

A /

Tested Statements and Results (2)

Are statically typed APIs faster to use? [0OOPSLA'12, ICPC'12]
Yes

Yes, but in case there is an error in the (unchecked) type

Is the previous finding only a matter of syntax? [A0osD'13]
It Is worse than having no type declaration at all!

Does documentation compensate the positive effect of
static types?[icse'14] No.

Tested Statements and Results (3)

Do generics really help? [oopPsLA'13]
Yes, If they occur in API interface. No, if application has
additional constraints because of generics.

measured positive effect of static types? [ICPC'14]

Do current IDEs (for dynamic TSs) compensate the previous
No

compensate the benefit of statically types PLs? [.just finished.]

Can code completion in dynamically typed languages
No

Results so far....

\
It looks like (Java-like) static type system

(in Java-like languages) really help in
. development! Y.

...but we still find exceptions where it is the opposite...
[interaction effects task*TS in almost all experiments]...

Ok, good starting point

...S0 far approximately 80% of all existing
controlled trials on type system

BUT ...

42

Ok, good starting point

...S0 far approximately 80% of all existing controlled trials on
type systems

BUT we still have to learn / to do a lot

Still very few experiments (not so many replications)

How do different tasks differ?

How do subjects differ?

How to programming styles differ?

Standard procedures for experimental design / analysis?

Community agreements on even most trivial things such as alpha
level?

43

Believe of Empirical Researchers

 The more experiments are available, the
more knowledge we have

 The more knowledge we have, the better are
our decisions

 The better our decisions are, the better I1s our
resulting software (or at least less expensive)

Why do we know so little about programming languages and

what iIf we had known more?

Thought Experiments

e Starting point

 Empirical researchers believe that empirical
knowledge would change the way how

a) people adopt a language
b) how people create languages

Thought Experiment 1

 Assume the knowledge on type systems
would have been known in 1984...

...would this have changed Smalltalk, Lisp,
etc?

Thought Experiment 1

 Assume the knowledge on type systems would have
been known in 1984...

...would this have changed Smalltalk, Lisp, Basic, etc?

e0f course not!!!!

(Just 10 experiments so far, relationship between type
system and reflection unclear, etc.)

« ...but maybe StrongTalk would have appeared earlier

Thought Experiment 2

* Assume the knowledge on PLs from 2044
would be available today

eand let's assume that empirical research is
massively applied in the next 30 years...

 How do we currently adopt new languages?

PL Adoption

[Meyerovich, Rabkin, OOPSLA'13]

Open source libs. (M)
Extending existingcode (E) mm0pr—+——+—————————

Personal familiarity (E)

Team familiarity (E)
Performance (M)
Portability/platform (E)
Development speed (M)
Tools (M)

Safety/correctness (I)
Potential team famil. (E)
Particular language feature (1)
Commercial libs. (M)

Simplicity (1)

|
I
I
I
I
I
I
I
I
I
I
1

= Overall
[1-100 employees
B 101+ employees |-

0 10 20 30 40 50 60 70 80

Percent of respondents describing aspect as
medium or strong importance

Figure 5: Importance of different factors when picking a language. Self-reported for every respondent’s last project. Bars
show standard error. E = Extrinsic factor, I = Intrinsic, M = Mixed. Shows results broken down by company size for respondents
describing a work project and who indicated company size. (Slashdot, n = 1679)

PL Adoption

[Meyerovich, Rabkin, OOPSLA'13]

Open source libs. (M)
Extending existing code (E)
Already used in group (E)
Personal familiarity (E)
Team familiarity (E)
Performance (M)

Portghil

Development speed (M)

Safety/correctness (I)
Potential team famil. (E)
Particular language feature (1)
Cop g

| T Overall .
L | [1-100 employees
_1 l Bl 101+ employees |
- | I |
' 20 30 40 50 60 70 80

Percent of respondents describing aspect as
medium or strong importance

Figure 5: Importance of different factors when picking a language. Self-reported for every respondent’s last project. Bars
show standard error. E = Extrinsic factor, I = Intrinsic, M = Mixed. Shows results broken down by company size for respondents
describing a work project and who indicated company size. (Slashdot, n = 1679)

PL Adoption

[Meyerovich, Rabkin, OOPSLA'13]

Extending existing code (E)
Already used in group
Personal familiarity (E)

Team familiarity (E)
Performance (M)

= I

Partahilitvinlatform (E

Development speed (M)

Safety/correctness (I)
Potential team famil. (E)
Particular language feature (1)

|

Commercial libs. (M) i |
Simplicity (1) | l Bl 101+ employees |

|

— | | I
0 10 20 30 40 50 60 70 80

Percent of respondents describing aspect as
medium or strong importance

= Overall -
[1-100 employees

Figure 5: Importance of different factors when picking a language. Self-reported for every respondent’s last project. Bars
show standard error. E = Extrinsic factor, I = Intrinsic, M = Mixed. Shows results broken down by company size for respondents
describing a work project and who indicated company size. (Slashdot, n = 1679)

Thought Experiment 2 — Question 1

* |f there is a language X that requires 10x
more development time, would that stop us
from adopting the language?

Thought Experiment 2 — Question 1

* |f there is a language X that requires 10x
more development time, would that stop us
from adopting the language?

NO!

(development speed does not matter that much for our decisions)

Thought Experiment 2 — Question 2

* |f there Is a language X with development
speed of factor 10, would this stop us using
the other languages?

Thought Experiment 2 — Question 2

* |f there Is a language X with development
speed of factor 10, would this stop us using
the other languages?

NO!

(development speed does not matter that much for our decisions)

Thought Experiment 2 — Questions

* |If there is a language X that requires 10x more
development time, would that stop us from adopting
the language?

No

« If there is a language X with development speed of
factor 10, would this stop us using the other
languages?

No

Thought Experiment 2 — Questions

What's wrong with us?

SE Research Methods & Education

—__| Any teaching at all?
Socio-
Technical

Stochastic-
Experimental - E

Stochastic ‘ '
[|
!

Benchmark-
based

I Classical

¥

Stochastic-
Mathematical

Technical v

Approaches ~+/Z_ |}

Empirical
Approaches

[Hanenberg, Faith, Hope, Love, Onward'10]

59

SE Research Methods & Education

—__| Any teaching at all?

Hardly any explicit teaching ’

(how to apply human-centered approaches) e
- | Technical |
1

Stochastic- ' Stochastic-
e bl = Y |
Mathematical ' Experimental -
' []
Technical L 3

Empirical
Approaches

Approaches ~+/Z_ |}

[Hanenberg, Faith, Hope, Love, Onward'10]

60

SE Research Methods & Education

—1Any teachlng at all?

Hardly any expl:c:t teaching
(how to apply human-centered approaches) | S I
ocio-
Technical

Hardly any ImleClt teachlng
[]

(the statement is true...look at the following
experiment)

Approaches ~+/Z_ |}

pirical
Approaches

[Hanenberg, Faith, Hope, Love, Onward'10]

61

Implications of missing teaching

Empirical knowledge is not well communicated =>

,aumbers are unknown*
(software engineering courses without mentioning any experiment,
same with PL courses)

We are not trained in ,,using numbers® as part of our
argumentation

We do not (or hardly) draw any conclusions from
empirical knowledge

What's needed?

Cultural shift in the PL community

We need to develop common lines of reasoning
We need to develop common ,standards of knowledge*

Finally, we need to draw conclusions from the collected knowledge
e ...don't use languages that make life much harder...

« ...even if they come from big companies...

« ...even if they are massivly adverticed....

Conclusion

 Empirical methods need to be taught and applied

more on this:

Hanenberg, Stefik, Designing Programming Languages for People: Data-
Driven Methods - Tutorial 9: Designing PL for People at Salon G, Friday
10.30

 But it also requires a cultural shift in the PL
community to draw conclusions

more on this:

Stefik, Hanenberg, The Programming Language Wars, Onward! Essays -
Session 3 at Salon A, Friday 1.30 pm

Why do we know so little about
programming languages, and what would
have happened if we had known more?

Stefan Hanenberg

University of Duisburg-Essen, Germany

Dynamic Language Symposium 2014
Portland, Orgegon, US

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65

